后端存储实战课学习心得
后端存储实战课学习心得这些技术的重点在运算的数据密集型本质,而非集群计算本身。在线业内人士称此种研究方法为“分析法”,诸如谷歌、IBM、雅虎这样的云计算公司及部分高校已经就此方法组建了工作室进行研讨,这些技术先锋试图从根本上利用云计算或统一体机器来进行大规模科研。目前在用的工具多为大规模并行软件平台,包括像MapReduce和Hadoop,它们可以进行廉价存储,且拥有庞大集群的数据中心。到目前为止
后端存储实战课学习心得这些技术的重点在运算的数据密集型本质,而非集群计算本身。在线业内人士称此种研究方法为“分析法”,诸如谷歌、IBM、雅虎这样的云计算公司及部分高校已经就此方法组建了工作室进行研讨,这些技术先锋试图从根本上利用云计算或统一体机器来进行大规模科研。目前在用的工具多为大规模并行软件平台,包括像MapReduce和Hadoop,它们可以进行廉价存储,且拥有庞大集群的数据中心。到目前为止
后端存储实战课学习心得
这些技术的重点在运算的数据密集型本质,而非集群计算本身。在线业内人士称此种研究方法为“分析法”,诸如谷歌、IBM、雅虎这样的云计算公司及部分高校已经就此方法组建了工作室进行研讨,这些技术先锋试图从根本上利用云计算或统一体机器来进行大规模科研。目前在用的工具多为大规模并行软件平台,包括像MapReduce和Hadoop,它们可以进行廉价存储,且拥有庞大集群的数据中心。到目前为止,除基因组学之外,很少有科学家采用这些新工具。NSF的集群探索计划的意图在于把那些拥有大型数据基础驱动观测的科学家,与那些具有计算机联网或云计算相关知识和专长的计算机科学家相匹配。
我的猜测是,这种新兴方法在科学方法的演进过程中将是一种额外工具。它并不会取代任何现有方法(不好意思,科学是永无止尽的),但它必将推动建立理论导向的科学。让我们把这种数据密集型解决问题的方法称为“相关性分析”。我认为克里斯·安德森将其论题命名为“理论的终点”是在浪费一个独一无二的机会,因为“理论的终点”是个否定概念,是某物的缺失。相反,这应该是某物的开始,当你用一个正面的名字命名某物的时候,这也是一个加速其面世的机会。一个非否定的命名将有益于阐明论题。我建议将之命名为“相关性分析”,它比“没有理论”要好,因为我也不能完全肯定这些相关系统不需要模型。我觉得在系统中有个新兴的、无意识的隐含模型,它会生成答案。即便谷歌中文房间的英语工作人员中,没有一个人知道任何中文理论,我们也仍然认为其中是含有理论因素的。模型可能超越系统创造者的认知和理解,而且既然它在运行,那也就没有究其根本的必要。它就在那里,用一种我们无法企及的水平运行着。